Ultrasonic studies of \(Ni(NO_3)_{2}.6H_{2}O\) in glycol + water solvent at 303.15 K

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Various acoustic parameters such as isentropic compressibility \((\beta_s)\), intermolecular free length (Lf), apparent molar volume \((\Phi_v)\), apparent molar compressibility \((\Phi_k)\), molar compressibility (W), molar sound velocity (R), acoustic impedance (Z) of Ni(NO3).6H2O in 10%, 20% and 30% Glycol + Water at 303.15K have been determined from ultrasonic velocity (U), density (p) and relative viscosity \((\eta_r)\) of the solution. These parameters are related with the molar concentration of the solution and reflect the distortion of the structure of the solvent i.e. Glycol + Water.

    Keywords: Ultrasonic Velocity, Acoustic Parameter, Density, Relative Viscosity, Glycol + Water.


  • References


    1. Nain A. K. et al, Molecular interactions in binary mixtures of formamide with Butan-1-ol, Butan-2-ol, Butan-3-ol at different temperatures. Journal of Fluid Phase Equilibria, (2008); 265 (1-2); 46-56.
    2. Bhoj Bhadur Gurung, Mahendra Nath Roy, Study of densities, viscosities and ultrasonic speeds of binary mixtures containing 1,2 diethoxy ethane with alkane-1-ol at 298.15 K. Journal of Solution chemistry, (2006); 35: 1587-1606.
    3. Zareena Begum et al. Thermodynamic, ultrasonic studies of binary liquid mixtures of anisaldehyde with alkoxy ethanols at different temperatures. Journal of Molecular liquids, Volume 178, February (2013); 99-112.
    4. Thanuja B, Charles Kanagam et al. Studies of intermolecular interactions on binary mixtures of methyl orange water system. Excess molar function of ultrasonic parameters at different temperatures. Journal of Ultrasonic Sonochemistry, (2011); 18; 1274 1278.
    5. Rajgopal K, Chenthilnath S, Study on excess thermodynamic parameters and theoretical estimation of ultrasonic velocity of 2-Methyl-2-propanol with nitriles at different temperatures. Journal of Chemical Engineering, (2010); 18: 806 816.
    6. Anil Kumar Nain, Journal of Fluid Phase Equilibria, (2007); 259 (2): 218 227.
    7. Shahla parveen, Divya Shukla, et al. Journal of Applied Acoustics, (2009); 70 (3): 507 513.
    8. Rajgopal K, Chenthilnath S, Journal of Molecular Liquids, (2011); 160(2):72 80.
    9. Masson, D.O., Philis, Mag.,(1929) 8 (7), 218 .
    10. Widemann. G. ibid. p 1241.
    11. Jone G and M. Dole (1929), J. Amer. Chem, Soc. 51, 2950.
    12. Rajjendran, V. (1996), Indian Journal of Pure & Applied Physics, 34, 52.
    13. Haribabu, V.V., Raju, G.R., Samanta, K and J.S. Murty (1996), Indian Journal of Pure & Applied Physics, 34, 764.
    14. Jacobson, B, Acta Chem, Scand,(1952), 6, 1985 .
    15. Nikam, P.S. and M. Hasan (1990), Indian Journal Pure & Applied Physics, 28, 197.
    16. Das Monalisa, Das Smrutiprava, Patnaik A. K., (2013), J. Chemistry, 1 10. DOI Org/10. 1155/2013/942430.
    17. Das Monalisa, Das Smrutiprava, Patnaik A. K., (2014), Int. J. Advanced Chemistry, 2(2), 66 - 69. DOI 10. 14419/ijac. V 2i2. 2114.

 

View

Download

Article ID: 2947
 
DOI: 10.14419/ijac.v2i2.2947




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.