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Abstract 
 

In this study, the modified extended tanh-function method is handling to obtain many new solitary wave solutions of two important mod-

els in nonlinear physics. The first one is the foam drainage equation which is a simple model for describing the flow of liquid through 

channels and nodes between the bubbles, driven by gravity and capillarity. The second is (2+1)-dimensional breaking soliton equation 

which describe the interaction of a Riemann wave propagating along the y-axis with along the x-axis. The obtained results are compared 

with that obtained in previous work. 
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1. Introduction 

In fluid mechanics trooping pockets of gas in liquid will form 

what is mean by the foam whose influence in the properties of 

liquid is important. The foam drainage in fluid mechanics accord-

ing to the accessible configuration is modeled analytically by one-

dimensional nonlinear partial differential equation. Also the 

(2+1)-dimensional breaking soliton equation which contributes to 

understanding most experiments and complex phenomena to many 

nonlinear branches of physics These two important models which 

used to represent the wave motion in different branches of nonlin-

ear physics (fluid, plasma,…,etc) are investigated mathematically. 

The modified extended tanh-function method is a good technique 

to obtain the exact travelling wave solutions (which contain some 

parameters) for these equations if these parameters take definite 

values the solitary wave solution can be derived from it Several 

methods are applied successively to solve the nonlinear partial 

equations through many authors [1-22] such as extended Jacobi 

elliptic function method, the F-expansion method, the modified 

simple equation-method, the modified simple equation-method, 

the ( )
G

G


 -expansion method ,the modified

1
( , )
G

G G


-expansion 

method , the exp( ( ) −  -expansion method, modified extended 

exp( ( ) − −expansion method, the Riccati-Bernoulli Sub-ODE 

method, exp-function method, the tanh-function method, the ex-

tended tanh-function method, modified extended tanh-function 

method and so on. The main idea of this method is finding the 

exact solution of any models which can be expressed by a poly-

nomial of ( )   which satisfies the Riccati differential equation 
2 ( )b   = + where x ct = − while b, c are arbitrary constants to 

be determined later .The degree of the polynomial can be calculat-

ed by the homogenous balance between the highest order deriva-

tive term and the nonlinear term. Equating the coefficients of the 

different power of ( )  to zero , we get the system of algebraic 

equations .The constants of the polynomial can be determined by 

solving this system of algebraic equation by Maple or any other 

computer program. The remainder of this paper is organized as 

follows: In section 2, we provide a description of the modified 

extended tanh-function method .In section 3 we use this method to 

find the exact and the solitary wave solutions of the nonlinear 

evolution equations given above. In section 4 our 

 conclusion is presented.  

2. Description of the method 

 Consider the following nonlinear evolution equation 

 

( , , , , ,.......) 0
t x tt xx

f u u u u u =
                                                              (1) 

 

Where f is a polynomial in u(x, t) and its partial derivatives in 

which the highest order derivatives and nonlinear terms are in-

volved. In the following, we give the main steps of this method. 

Step1. We use the wave transformation, 

 

( )( , ) , .u x t u x ct and c is cons = = −
                                        (2) 

 

To reduce Eq. (1) to the following ODE: 

 

( , , , ,.......) 0p u u u u   =                                                                    (3) 

 

Where P is a polynomial in ( )u   and its total derivative, while (′ 

=
d

d 


 ) 

Step2. Suppose the solution of Eq. (3) has the form: 

( ) 0
1

( )
m

i

i i
i

i

b
u a a 

=

= + +

                                                                  (4) 
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Where ,
i i

a b  are constants to be determined, such that 

0 0
m m

a or b   and   satisfies the  

 

Riccati equation 2b  = +                                                            (5) 

 

Eq. (5) admits several types of solutions according to the value of 

the constant b namely: 

Case1. If 0b  , then  

 

( ) ( )tanh , coth .b b or b b   = − − − = − − −
                         (6) 

 

Case2. If 0b  , then  

 

( ) ( )tan , cot .b b or b b   = = −
                                      (7) 

 

Case3. If 0b =  , then 

 

1



= −

                                                                                         (8) 

 

Step3. Determine the positive integer m in Eq. (4) by balancing 

the highest order derivative term and the nonlinear term Step4. 

Substitute Eq.(4) along Eq.(5) into Eq.(3) and collecting all the 

terms of the same power of 
i , 0, 1, 2, 3,........i =     and by equat-

ing the coefficient of different power of   to zero, we obtain a 

system of algebraic equations, which can be solved by Maple or 

Mathematica to get the values of i
a

, i
b

. 

Step5. Substituting these values and the solutions of Eq. (5) into 

Eq. (4) we obtain the exact solutions of Eq. (1). 

3. Application 

Example (1): The foam drainage equation [2] 

The drainage of foam liquid involves the interplay of gravity, 

surface tension and viscous force. According to the accessible 

configuration the dynamic of the foam drainage in fluid mechanics 

phenomena are modeled analytically using one -dimensional non-

linear partial differential equation namely the foam drainage equa-

tion. 

Here, we will apply the modified extended tanh -function method 

described in sec.2 to find the exact traveling wave solutions and 

then the solitary wave solutions for the foam drainage equation. 

Consider the foam drainage equation [28] 

 

2( ) 0
2

t x x

u
u u u+ − =

                                                                     (9) 

 

Where x and t scaled position and time coordinates, respectively. 

Foam is central to a number of everyday activities, both natural 

and industrial. As such foam has been of great interest for academ-

ic research. In the process industries, foam can be a desirable and 

even essential element of a process. An example is in the case of 

the forth flotation separation of minerals and coal [28]. Foaming 

occurs in many distillation and absorption processes. Foams are 

very important in many technological processes and applications. 

Their properties are subject to intensive investigational efforts 

from both practical developers and scientific researchers [28].In 

this study; we show the effectiveness and convenience of the 

method by obtaining the exact solution of Eq. (9). 

Using the wave variable  = k(x + ct), Eq. (9) is carried to an ODE 

2( ) 0
2

k
cku k u uu  + − =

                                                             (10) 

 

Integrating Eq. (10) with respect to  and considering the zero 

constants for integration we obtain. 

 

2( ) 0
2

k
cku k u uu + − =

                                                              (11) 

 

Then we use the transformation 

 

( ) 2 ( ),u v =
                                                                            (12) 

 

That will convert Eq. (11) to 

 
2 4 2 2 0kcv kv k v v + − =                                                                  (13) 

 

Or equivalently 

 
2 0c v kv + − =                                                                             (14) 

 

Balancing 2,v v yields m+1 = 2m  m= one. Consequently, we 

obtain the solution 

 

( ) 1

0 1
( ) ,

( )

b
u a a  

 
= + +

                                                         (15) 

 

Substituting about 
2

v and v  at Eq. (14), and equating different 

power of   ( ) to zero, we obtain algebraic system of equation 

 
2

1 1

0 1

2

1 1

0 1

2

0 1 1 1 1 1 1

0

2 0

0

2 0

2 0

a ka

a a

b kbb

a b

c a ab kab kab kb

− =

=

+ =

=

+ + − − + =
                                                     (16) 

 

Solving this system by Maple or Mathematica, we get 

 

0 1 1 2

0 1 1 2

1

0 1 1 2

(1) 0, , ,
4 4

(2) 0, , 0 ,

(3) 0, 0 , ,

c c
a a k b b

k k

c
a a k b b

a

c c
a a b b

k k

= = = − =

= = = =

= = = − =

 

 

Case (1): 

 

For, 
0 1 1 2

0, , ,
4 4

c c
a a k b b

k k
= = = − =  

 

The solution is 

 

1
( ) ( )

4

c
v k

k
 


= −  

 

When b˂0, we get the solitary wave solution 

 

2 2 2 2
( ) tanh cot

4 4 4 4 4

c c c c c
v

k k k k k
  

   −
= − − − −      

               (17) 

 

2 2 2 2
( ) coth tanh

4 4 4 4 4

c c c c c
v

k k k k k
  

   −
= − − − −      

                      (18) 

 

When b˃0, we get the solitary wave solution 
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2 2 2 2
( ) tan cot

4 4 4 4 4

c c c c c
v

k k k k k
  

   
= −      

                        (19) 

 

2 2 2 2
( ) cot tan

4 4 4 4 4

c c c c c
v

k k k k k
  

   
= −      

                        (20) 

 

When b=0, we get the trivial solution. 

Case (2): 

 

0 1 1 2

1

(2) 0, , 0 ,
c

a a k b b
a

= = = =  

 

The solution is ( )v k =  

 

When b˂0 , we obtain the solitary wave solution 
 

 

 

2 2
( ) tanh

4

c c
v k

k k
 

 −
= − −  

                                                    (21) 

 

2 2
( ) coth

c c
v k

k k
 

 −
= − −  

                                                       (22) 

 
When b˃0 , we obtain the solitary wave solution 

 

2 2
( ) tan

c c
v k

k k
 

 
=   

 
                                                           (23) 

 

2 2
( ) cot

c c
v k

k k
 

 
=   

                                                             (24) 

 

When b=0, we get the solitary wave solution. 

 

 

( )
k

v 


= −

                                                                                 (25) 

 

Case (3) 

 

0 1 1 2
(3) 0, 0, ,

c c
a a b b

k k

−
= = = =

 
 

The solution is ( ) /v bk =   

When b˂0 , we obtain the solitary wave solution 

 

2 2
( ) tanh

c c c
v

k k k
 

 −
= −  

                                                       (26) 

 

2 2
( ) coth

c c c
v

k k k
 

 −
= −  

                                                        (27) 

 

When b˃0 , we obtain  

 

2 2
( ) tan

c c c
v

k k k
 

 −
=   

                                                           (28) 

 

2 2
( ) cot

c c c
v

k k k
 

 −
=   

                                                           (29) 

 

When b=0, we obtain the trivial solution 

 
 

Eq. (17). 

 
 

Eq. (19). 

 
 

Eq. (21). 

 
 

Eq. (23). 
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Eq. (25). 

 
 

Eq. (26). 

 
 

Eq. (28). 

 
Example (2): The (2+1)-Dimensional Breaking Soliton Equation [29]. 

 

Let us consider the (2+1)-dimensional breaking soliton equation, 

 
4 4 0

t xxy x x

y x

u u uv u v

u v

  + + + =

=
                                                     (30) 

 

Where  is a well-known constant, physically this equation de-

scribes the (2+1)-dimensional interaction of a Riemann wave 

propagating along the y-axis with along wave along the x-axis. 

Many authors [30 - 33] study this equation by different manner to 

get soliton-like solutions, a class of periodic wave solutions, and 

two classes of exact solutions. 

According to our proposed method, let us introduce the transfor-

mation  = x + y −ct. 

Sub.at (30) we get, 

 
4 4 0cu u uv u v

u v

     − + + + =

 =
                                                    (31) 

 

Integrating the second part of Eq. (31) with taking the constant of 

integration in account, 

Sub.at the first part of Eq. (31), we obtain 

 

( )1
4 4 0cu u uu u u c     − + + + + =

                                            (32) 

 

Integrating the last Eq., we get 

 
2

1
(4 ) 4 0c c u u u  − + + =

                                                        (33) 

 

Balancing the nonlinear term with the highest order derivative 

term, we find m+1 = 2m  m= 2. 

Consequently according to the constructed method the solution is 

 

( ) 21 2

0 1 2 2
( ) ( ) ,

( ) ( )

b b
u a a a    

   
= + + + +

                               (34) 

 

Substituting about ,u u and u  at Eq. (33) and equating the coeffi-

cients of the different powers of   to zero, we get the system of 

algebraic equations namely,  

 
2

2 2

1 1 2

2

1 2 2 1 0 2

1 1 1 2 1 0 1

2 2

2 2

2

1 1 2

2

1 2 2 1 0 2

1 1 1 1 2 0 1

1 0

6 4 0

2 8 0

(4 ) 8 4 ( 2 ) 0

(4 ) 2 4 ( 2 2 ) 0

6 4 0

2 8 0

(4 ) 8 4 ( 2 ) 0

(4 ) 2 4 ( 2 2 ) 0

(4 ) 4 (

a a

a a a

c c a a b a a a

c c a a b a b a a

b b b

b b b b

c c b b b b a b

c c b b b a b a b

c c a

 

 

  

  

 

 

  

  

 

+ =

+ =

− + + + =

− + + + =

+ =

+ =

− + + + =

− + + + =

− + 2 2

0 1 1 2 2 2 12 2 ) (2 2 ) 0a a b b a a b b+ + + + =

                                   

 

(35)

 

 

Solving this system of algebraic equations by Maple or any com-

puter program, we get the case 

 
2

01

0 1 2 0 1 2

3
( ), 0, 3 / 2, , 0, .
16 4 2

acc
a a a b a b b



−
= − = − = = =                 (36) 

 

The solution is  

 

( )
2

2 01

2

3 1
( ) (3 / 2) ( ) .
16 4 2 ( )

acc
u   

  
= − − −                                   (37) 

 

When b˂0 

 

2 2 21 1 1 1 1
3 3

( ) ( ) ( ) tanh ( ) coth
16 4 2 16 4 4 16 2 16 4 4 16

c c c c cc c c c c
u   

    

   
= − − − − − − −      

        (38) 

 

2 2 21 1 1 1 1
3 3

( ) ( ) ( )coth ( ) tanh
16 4 2 16 4 4 16 2 16 4 4 16

c c c c cc c c c c
u   

    

   
= − − − − − − −      

     
When b˃0, we get the solitary wave solution 

 

2 2 21 1 1 1 1
3 3

( ) ( ) ( ) tan ( ) cot
16 4 2 16 4 16 4 2 16 4 16 4

c c c c cc c c c c
u   

    

   
= − − − − − − −      

      (39) 

 

2 2 21 1 1 1 1
3 3

( ) ( ) ( )cot ( ) tan
16 4 2 16 4 16 4 2 16 4 16 4

c c c c cc c c c c
u   

    

   
= − − − − − − −      

             (40) 

 

When b=0, we get 
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2 21 1

2

3 3
( ) ( ) ( )

16 4 2 2 16 4

c cc c
u  

  
= − − − −

                                     (41) 

 
 

Eq. (38)  

 
 

Eq. (39). 

 
 

Eq. (40). 
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6. Conclusion 

In this study, after comparing our solutions (17-28) for the foam 

equation and (36) for the (2+1)-dimensional breaking soliton with 

that obtained by other authors, we find that many new solitary 

solutions according to the proposed method are introduced which 

are consistent in some cases but not in other.The proposed method 

give a large numbers of solitary solutions which give a good inter-

pretation for the foam drainage and the (2+1)-dimensional break-

ing soliton phenomenon .Also, these large numbers of solitary 

solutions will help the Scientists to treat these phenomenon exper-

imentally. And this well makes a forward effect on the application 

in fluid mechanics and plasma physics. Also, the obtained solu-

tions can be considered as benchmarks against the numerical sim-

ulations in the fluid mechanics and plasma physics. 
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