Synthesis photophysical studies of some furfurylnitrones: highly selective chemosensors for Zn2+ and DFT studies

EzhumalaiDhineshkumar1, MathivananIyappan1, RajendranGanapathi1, ChinnaduraiAnbuselvan1**

1Department of Chemistry, Annamalai University, Annamalainagar – 608 002, India
*Corresponding author E-mail:cas_amu@yahoo.co.in

Presently at PG and Research department of Chemistry, Government Arts college, Chidambaram-608102, India

Abstract

New aldonitrones(1-4) were synthesized and characterized by UV-vis, fluorescence, FT-IR, 1H and 13C NMR spectral analyses. The absorption and fluorescence sensing spectra of the compounds were precise in different polarity of solvent. The solvent polarity parameters have been used to propose a quantitative approach towards the reliable stability of the electronic ground and excited state species. Photochemical behaviors of the compounds were analyzed by applying multi-linear correlation methods. The characterized compounds 1-4 show a chemosensing detection of zinc ion in aqueous solution. Besides, the fluorescence spectroscopic responses were reversible when the Zn2+ chelating reagent EDTANa2. The phenomenon proves that these compounds to show a sensitivity “on-off” sensor for Zn2+. Further, to recognize the molecular structure, electronic and optical properties and DFT calculations of the molecules were formed.

Keywords: Aldonitrones; Solvatochromic Absorption; Zn2+ Sensor; DFT.

1. Introduction

A fluoresce chemosensors is a assign of physicochemical properties change on interaction with an active species. The pledge of fluorescent detection is superior to other analytical measurements is very high promise, sensitivity, simplicity of use, and low expenditure (Butler et al. 2008; Yanagida et al. 2009; Szmacinski et al. 1993; Lakowicz et al. 1983; Czarnik et al. 1994; Lakowicz et al. 1995).

Zinc ion (Zn2+) is the key note of awareness ascribing to the biological significance. Zinc ion is a readily broad range of application used transition metal ion amongst (2.3 g Zn for an normal person) (Dudev et al. 2003). Zn2+ is now recognized as one of the most important cations in catalytic centres and structural cofactors of many Zn2+-containing enzymes and DNA-binding proteins (e.g., transcription factors) and play a vital constituent of various protein scaffolds (e.g., carbonic anhydrase and zinc finger protein) (Laity et al. 2001). Zinc ion has been well-known to perform as a principal component of proteins catalytic site of enzymes (Datta et al. 2013) and plays verycruical roles in gene transcription and enzymatic function (Vallee et al. 1993). The occurrence of neurobiology of Zn(II) has become a subject of raising awareness (Scrimgour et al. 2007; Bush et al. 2000; Frederickson et al. 2004) and a key note of element implicated in a plethora of biological aspects, like as cellular metabolism, neurotransmission, and apoptosis and is also drawn in the pathologic recognition of several diseases such as Alzheimer’s disease, epilepsy, ischemic stroke, infantile diarhoea, gene transcription, immune function, mammalian reproduction brain function and pathology, (Frederickson et al. 2005; Bush et al. 1994; Silva et al. 1997).

Zn2+ is vital for wound healing and during the increase the growth of adolescent human body, babyhood and pregnancy. Even though Zn2+ is strongly jumped to enzymatic condition and proteins, free zinc pools survive in a quantity of tissues, the brain, intestine, pancreas, and retina. Because Zn2+ is a spectroscopically silent feature due to its d10 electronic configuration, sensing for the finding of Zn2+ has been established intensively. Several literature reviews have been focused on various notes of zinc fluorescent chemosensors (Carol et al. 2007; Kimura et al. 2001; Que et al. 2008). An enhancement of fluorescent chemosensor for the finding of these metal cations is the great awareness in environmental ones and biological chemistry.

Nitrones (Hamer etal.1964) means (nitrogen-ketone) which involves C=N group are established into two type’s and ketonitrones with alkyl, aryl substituents on Cα instead of hydrogen atoms. Nitrones which are extensively studied for the characterization of stereoselective 1,3-dipolar cycloaddition. (Tufariello et al. 1979; Black et al. 1975; Huisgenetal1963. Hassan et al. 2000). It’s employed to the oxidant of toxic mercuric oxide; in order to establish the aspects of nitrones due to its mild reaction condition has been widely illustrated. In a single step process, owing to its 1, 3-dipolar cycloaddition is a salient feature of stereomer has been summarized (Tufariello et al.1984; Tufariello et al. 1979).

From the above account studies of nitrones, to intend the arrangement of aldosterones and their distinguish module of fluorescence sensor is an essential goal for organic and analytical chemists. Therefore, research on chemosensing nature of metal-ion-selective fluorescent sensing have been great attention from chemical-scientists, and immense achievements have been reported (Kiku-chi et al. 2010; Xu et al. 2010; Quang et al. 2010; Wu et al. 2011), we comprehension the synthesis, characterization, and discriminating recognition behaviour of aldosterones derivatives as an extremely well-organized chemosensors for Zn2+. Emission spectroscopy is extensively used high selectivity, simple application, and low cost. In the present work, substituted, aldosterones were de-
talled explanation of UV-Vis, FT-IR, 1H and 13C NMR techniques, emission spectroscopy. To design the sensor shows tremendously high selectivity compared to the recently determined Zn$^{2+}$ sensors ascribed to the very high association constants for the binding of Zn$^{2+}$. Since aldosterones are non toxic and studies are made in an aqueous ethanol mediums those be able to mark Zn$^{2+}$ in the biological system.

1.1. Synthesis of aldonitrones (1-4)

On the event of the stirred mixture of ammonium chloride (1.55 g), freshly distilled nitrobenzene (3.1 g) and zinc dust (3.75 g) was adequate amounts over a period of 30 min. After completion of the reaction, the filtrate is saturated with sodium chloride and cooled in ice. β-Phenylhydroxylamine, which separated out as yellow crystals, was collected and dried. A mixture of equimolar amounts of 2-nitro furfuraldehyde and β-phenylhydroxylamine in minimum amounts of the ethanol was heated in a water bath with occasional shaking for 1 h. The solution was diluted with water until it became solid mass. The solution mixture was kept at room temperature for about 3 hrs. The nitrones (1-4) that separated was recrystallized in the ratio of benzene-petroleum.

![Scheme 1: Synthetic Pathway of Aldonitrones.](image)

2. Results and discussion

The bands in the interval 3042-3030 cm$^{-1}$ are attributed to be aromatic ν_{C-H} A stretching frequency at 2020-2860 cm$^{-1}$ indicated is that aliphatic ν_{C-H}. The band at 1545-1500 cm$^{-1}$ recognized to $\nu_{C=O}$. A strong intense band at 1485-1460 cm$^{-1}$ indicate that ν_{C-C} of the benzene nucleus. The frequency was observed at 1084-1013 cm$^{-1}$ attributed to ν_{C-O} substituted furan ring frequency exhibit at 1180-1154 cm$^{-1}$. As seen from 1H NMR spectral data, the aromatic signal appeared throughout the region 7.29-8.05 ppm. The C-H protons in the title compounds are appeared around 8.40 ppm. In compound 2, the NH$_2$ proton observed at 6.12 ppm. In compound 3, the OH proton attributed at 5.56 ppm. The methyl proton appeared as a singlet at 2.42 ppm in compound 4. The C-H carbons in the molecular compounds are around 174.11 ppm. In all the cases the aromatic carbons described at 112.7-149.11 ppm. The methyl carbon described at 29.73 ppm for compound 3. The observed spectral signals corroborate formation of compounds 1-4.

2.1. Absorption and fluorescence spectroscopy

The electronic absorption spectra of the compounds under study in various solvents of diverse polarity are reported in Table 1. The data reveal that the compounds absorb around 390 nm. The absorption is independent of solvent polarity. Which involve due to n-π^* transition of whole electronic systems of the title compounds with a considerable charge transfer (CT) character originating mainly from benzenoid moiety and pointing towards the hetero furfuraldehyde ring which is characterized by the high electron acceptor. The charge transfer nature of this group to detect a deduced from its broadness in λ_{max}. This band acquire substantial shift toward lower energy when ‘R’ is an electron donor compared with its position in the case of ‘R’ being an electron acceptor. This shift can be considered a good proof for the charge transfer character. UV-visible spectroscopy of 1-4 are shown in Fig. 1. A weak second band in almost all the compounds detailed in the wavelength range 305 nm which is ascribed to π-π^* electronic transition. The fluorescence spectra are determined by exciting the sample at its longest absorption maximum. The values are given is Table 1. The sensing behaviors of the title compound have a maximum around 430 nm which depends on solvent polarity.

![Fig. 1: Absorption Spectra of Compounds 1-4 Recorded at Different Solvents.](image)
The charge transfer band place a shift of about 01-33 nm in the absorption spectra on changing the solvent from the ratio between ethanol to n-hexane of the fluorescence spectra show the larger shift as compared with the absorption spectra. The emission spectra of 1-4 are shown in Fig. 2. The less marked absorption shift with solvent denotes that the ground-state energy distribution is not affected to a major extent it happens due to the less polar nature of the dyes in the ground state rather than the excited level.

2.2. Effect of solvents analysis of compounds 1-4

The greatest magnitude of the Stokes shifts varies at different interval 2500 to 4000 cm⁻¹. The values of the Stokes shift are also used to detect of charge transfer transition. While changing the solvent from a low polar solvent like cyclohexane to high polar like methanol shows a difference is Stokes shift about 700 cm⁻¹ again investigative of a charge transfer transition. One of the greatest magnitudes of the Stokes shift implies that the excited state geometry could be diverse from that of the ground state. The general examination is that there is an increase in the Stokes shift principles with increasing in polarity simultaneously, which shows an amplify in the dipole moment on excitation (Table 2).

When the Stokes shifts were plotted against the solvent polarity scale observed on the empirical limit ET(30), which considers also other interactions of specific quality in addition to the non-polar solvent effects. A fair linear correlation was observed in Fig. S 13. From the we can scrutinize clear evidence the specific solute/solvent interactions, and obligation that hydrogen bonding might give a significant crucial role for the stability of the title compounds by solvated with HBD solvents. Furthermore, as the show in a linear correlation analysis of emission energy covering wide range of ET(30) (14 kcal mol⁻¹) with a single slope. This expansion has been explained as such due to the presence of unique excited state. At least two different sets of solvent scales can be found throughout the literature to exemplify these solvent properties. In the present analysis, the polarity, acidity and the basicity of the solvents are considered. Kamlet and Taft (Reichardt et al. 2006) put forward the π*, α and β respectively, to detailed perception of the respective properties of a given solvent (eqn. 1).

\[y = y_0 + a_x^\alpha + b_y^\beta + c_z^\pi^*(\text{Kamlet-Taft}) \] \hspace{1cm} (1)
The dominant coefficient affecting the absorption and emission band of compounds under investigation is that relating the polarity towards the solvent having a positive value, corroborating the solvatochromic shifts with the solvent polarity. For the compounds 1-4, to better coefficient determining the electron releasing group of the solvent, β has the large negative values, suggesting solvent basicity play a major role in Uv-visible and emission displacements, which can be due to the greatest aspects of positive charge on the oxygen atom to that the basic solvent stabilizes the structures’ effect on basis solvatochromatic shifts. The existence of good correlations between the Uv-visible and sensing charger of wavenumbers designed by multiple linear regression analysis the Taft considered solvent parameters and detect the correlation coefficients are given in Table 3.

Table 2: Statistical Visualized of the Kamlet-Taft Solvation Energy Relationship for the Absorption and Emission Spectral Data of Aldonitrones

<table>
<thead>
<tr>
<th>Compound</th>
<th>Spectral data</th>
<th>Intercept 10^3</th>
<th>α (cm^-1) 10^3</th>
<th>β (cm^-1) 10^3</th>
<th>π^* (cm^-1) 10^3</th>
<th>R²</th>
<th>Number of solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Absorption (ν_a)</td>
<td>0.263</td>
<td>-0.090</td>
<td>0.0125</td>
<td>0.0124</td>
<td>0.570</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Fluorescence (ν_f)</td>
<td>0.231</td>
<td>-0.028</td>
<td>0.0424</td>
<td>0.0291</td>
<td>0.590</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>0.031</td>
<td>0.010</td>
<td>0.0049</td>
<td>0.0114</td>
<td>0.567</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Absorption (ν_a)</td>
<td>0.263</td>
<td>-0.029</td>
<td>0.0696</td>
<td>-0.0538</td>
<td>0.522</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Fluorescence (ν_f)</td>
<td>0.241</td>
<td>-0.033</td>
<td>0.0736</td>
<td>-0.0541</td>
<td>0.525</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>0.028</td>
<td>0.023</td>
<td>0.0747</td>
<td>0.0574</td>
<td>0.645</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Absorption (ν_a)</td>
<td>0.262</td>
<td>-0.046</td>
<td>0.0117</td>
<td>0.0105</td>
<td>0.622</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Fluorescence (ν_f)</td>
<td>0.223</td>
<td>-0.027</td>
<td>0.0522</td>
<td>0.0376</td>
<td>0.479</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>0.036</td>
<td>-0.012</td>
<td>0.0880</td>
<td>0.0767</td>
<td>0.554</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Absorption (ν_a)</td>
<td>0.265</td>
<td>0.019</td>
<td>-0.0183</td>
<td>0.0043</td>
<td>0.690</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Fluorescence (ν_f)</td>
<td>0.231</td>
<td>0.088</td>
<td>0.0971</td>
<td>-0.0162</td>
<td>0.548</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>0.031</td>
<td>0.010</td>
<td>0.0281</td>
<td>0.0205</td>
<td>0.573</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 3: Statistical Treatment of the Kamlet-Taft Solvation Energy Relationship for the Absorption and Fluorescence Spectral Data of Aldonitrones in Aprotic and Protic Solvents

<table>
<thead>
<tr>
<th>Compound</th>
<th>Spectral data</th>
<th>Intercept 10^3</th>
<th>α (cm^-1) 10^3</th>
<th>β (cm^-1) 10^3</th>
<th>π^* (cm^-1) 10^3</th>
<th>R²</th>
<th>Number of solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprotic</td>
<td>Absorption (ν_a)</td>
<td>0.254</td>
<td>0.184</td>
<td>-0.013</td>
<td>0.224</td>
<td>0.996</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>Fluorescence (ν_f)</td>
<td>0.217</td>
<td>0.297</td>
<td>-0.022</td>
<td>0.378</td>
<td>0.992</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>0.375</td>
<td>-0.079</td>
<td>0.753</td>
<td>-0.1311</td>
<td>0.736</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Absorption (ν_a)</td>
<td>0.256</td>
<td>0.358</td>
<td>-0.285</td>
<td>0.476</td>
<td>0.872</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Fluorescence (ν_f)</td>
<td>0.228</td>
<td>0.373</td>
<td>-0.288</td>
<td>0.478</td>
<td>0.976</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>0.032</td>
<td>-0.083</td>
<td>0.373</td>
<td>-0.048</td>
<td>0.849</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Absorption (ν_a)</td>
<td>0.259</td>
<td>0.028</td>
<td>-0.091</td>
<td>0.083</td>
<td>0.999</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Fluorescence (ν_f)</td>
<td>0.211</td>
<td>0.309</td>
<td>-0.023</td>
<td>0.380</td>
<td>0.999</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>0.410</td>
<td>-0.157</td>
<td>0.016</td>
<td>-0.287</td>
<td>0.756</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Absorption (ν_a)</td>
<td>0.252</td>
<td>0.194</td>
<td>-0.015</td>
<td>0.251</td>
<td>0.926</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Fluorescence (ν_f)</td>
<td>0.217</td>
<td>0.363</td>
<td>-0.027</td>
<td>0.458</td>
<td>0.978</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>0.034</td>
<td>-0.168</td>
<td>0.012</td>
<td>-0.206</td>
<td>0.998</td>
<td>15</td>
</tr>
<tr>
<td>Protic</td>
<td>Absorption (ν_a)</td>
<td>-0.92</td>
<td>9.10</td>
<td>-8.01</td>
<td>5.14</td>
<td>0.979</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>Fluorescence (ν_f)</td>
<td>-1.94</td>
<td>1.23</td>
<td>-2.31</td>
<td>1.44</td>
<td>0.950</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>1.51</td>
<td>-8.19</td>
<td>1.51</td>
<td>-9.21</td>
<td>0.936</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Absorption (ν_a)</td>
<td>-1.62</td>
<td>-8.76</td>
<td>1.60</td>
<td>-9.68</td>
<td>0.869</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Fluorescence (ν_f)</td>
<td>-1.53</td>
<td>8.44</td>
<td>1.54</td>
<td>9.39</td>
<td>0.924</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>1.31</td>
<td>-7.09</td>
<td>1.30</td>
<td>-7.96</td>
<td>0.992</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Fluorescence (ν_f)</td>
<td>1.84</td>
<td>-8.58</td>
<td>1.51</td>
<td>-8.89</td>
<td>0.934</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Stokes shifts</td>
<td>1.12</td>
<td>-6.23</td>
<td>1.15</td>
<td>-7.07</td>
<td>0.963</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Absorption (ν_a)</td>
<td>-3.53</td>
<td>2.16</td>
<td>4.07</td>
<td>2.54</td>
<td>0.926</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Fluorescence (ν_f)</td>
<td>-7.24</td>
<td>4.17</td>
<td>7.72</td>
<td>4.75</td>
<td>0.961</td>
<td>15</td>
</tr>
</tbody>
</table>

\[f(n,ε) = \frac{2n^2 + 1}{ε^2 + 2} \left(\frac{ε - 1}{ε + 2} \right) \left(\frac{n^2 - 1}{n^2 + 2} \right) \]
(4)

\[G(n) = \frac{3}{2} \left(\frac{n^2 - 1}{n^2 + 2} \right) \]
(5)

\[p_v = p_{v0} + \text{constant} \]
(2)

\[p_{v+} = p_{v0} + [f(ε, n) + 2g(n)] + \text{constant} \]
(3)

Where

\[m_1 = \frac{2(μ_2 - μ_1)^2}{hca} \]
(6)

\[m_2 = \frac{2(μ_3 - μ_1)}{hca^3} \]
(7)

2.3. Evaluation of dipole moment

Based on the quantum mechanical perturbation theory (Kawski et al. 2006) of the incorporation and fluorescence band shifts (in wavenumbers) in the solvents of different permittivity (ε) and refractive index (n), the following equations are observed (Ghazy et al. 2004).

\[f(ε, n) = \frac{2n^2 + 1}{ε^2 + 2} \left(\frac{ε - 1}{ε + 2} \right) \left(\frac{n^2 - 1}{n^2 + 2} \right) \]
(4)

\[G(n) = \frac{3}{2} \left(\frac{n^2 - 1}{n^2 + 2} \right) \]
(5)

\[p_v = p_{v0} + \text{constant} \]
(2)

\[p_{v+} = p_{v0} + [f(ε, n) + 2g(n)] + \text{constant} \]
(3)

Where

\[m_1 = \frac{2(μ_2 - μ_1)^2}{hca} \]
(6)

\[m_2 = \frac{2(μ_3 - μ_1)}{hca^3} \]
(7)
Where μ_g and μ_e are the dipole moments of the ground and excited states respectively, \(\hbar \) is Planck’s constant and \('c' \) is the velocity of light in vacuum. The parameters m_1 and m_2 are obtained from the description absorption and fluorescence band shifts ($\vec{\mu}_g - \vec{\mu}_e$ and $\vec{\mu}_g + \vec{\mu}_e$) and solvent polarities from above equations. If the ground and excited states are parallel, the following expressions are obtained on the basis of relations (eqns. 6 and 7) (Kawski et al. 2002).

\[
\mu_g = \frac{m_1 - m_2}{2} \frac{\hbar c a}{2m_1} \tag{8}
\]

\[
\mu_e = \frac{m_1 + m_2}{2} \frac{\hbar c a}{2m_1} \tag{9}
\]

And

\[
\mu_e = \frac{m_1 + m_2}{m_1 - m_2} \mu_g \tag{10}
\]

The Onsager radius \('a' \) of the solute molecule can be firm by using atomic increment method (Lippert et al. 1957; Lippert et al. 1955). Note that the solvent polarity function \('f(e,n)' \) is diverse from Lippert-Mataga function (Husain et al. 2012). Absorption maximum shows a general no dependence on polarity of the solvent and fluorescence maxima show modest dependences these observations propose that the ground state to establish the certain extent state. Then a sensor shows shift on varying the characteristic of the solvent. Therefore, the nature and execute the emission state may be different nature of these two class of solvents. These results are depicted in Table 4.

The scattered points in Figs.S14 and S15 forward interaction between solute and solvents the ratio of dipole moments are more than one. Table 5 presents a comparison of ground and excited state changes of the dipole moment of fururylnitronees estimated experimentally described as using solvatochromic method. It is pitival to note that fururylnitronees possess greater dipole moment in the excited state than in the ground state. The molecule exhibits a excited state which is more polar than the ground state for planar form.

<table>
<thead>
<tr>
<th>Table 4: Evaluation of Dipole Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. No.</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

i) Slope = $\vec{\mu}_g - \vec{\mu}_e$ (cm$^{-1}$) Vs $f(e,n)$

ii) Slope = $\vec{\mu}_g + \vec{\mu}_e$ (cm$^{-1}$) Vs $f(e,n)$+ 2g(n)

<table>
<thead>
<tr>
<th>Table 5: Dipole Moments (In Debye, D) of 1-4 in the Ground and Excited States Calculated by Kawski Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

*1 Debye = 3.33564 x 10$^{-18}$ cm3 esu cm a – Cavity radius, m_1 and m_2 – Slope obtained for Kawski correlation, μ_g – Ground state dipole moment, μ_e – Excited state dipole moment.

2.4. Fluorometric response of 1-4 to metal ions

The recognition profiles of compounds 1-4 were invested by measuring emission spectra against different metal ions (Co$^{2+}$, Cu$^{2+}$, Cd$^{2+}$ and Ni$^{2+}$) is added. Fluorescence emission spectroscopy was used to monitor the competition event. The fluorescence quenching observed for Zn$^{2+}$ (1-4). Besides, Zn$^{2+}$ ions to all the four compounds in ethanol, and huge fluorescence quenching are ascribed at 450-460 nm (Fig. 6). The fluorescence sensing properties of quenching observed for Zn$^{2+}$ is not seen for other metal ions, such as Co$^{2+}$, Cu$^{2+}$, Cd$^{2+}$ and Ni$^{2+}$ different metals were tested the small difference when one equivalent was added. When more equivalents of Co$^{2+}$, Cu$^{2+}$, Cd$^{2+}$ and Ni$^{2+}$ were added, some reduction in the fluorescence was observed. This implies that these metal ions are displacing the Zn$^{2+}$ from compounds 1-4. To recognize the interface between compounds 1-4 and Zn$^{2+}$, the fluorescence variation of compounds 1-4 was measured on addition of Zn$^{2+}$ from 0 to 8 μM (Fig. 7). Their fluorescence spectra are the same when normalized. Furthermore, it is well recognized in coordination complex aspects of zinc with a ligand containing at least two nitrogen donor atoms is favored by the activation of the inert pair on the Zn$^{2+}$ ion, leading to a shortening of the Zn–N bond length and a much greater covalent bonding. To further examine the sensitivity for Zn$^{2+}$ ions and competing over other metal ions, interferences to the selective response of receptor 1-4 to Zn$^{2+}$ by coexisting ions were evaluated, no important interference in detection of Zn$^{2+}$ was experimental in the presence of other competitive cations.
Their fluorescence sensing, this established the same when normalized. As shown figures, there is a smooth transition from the free compound to the Zn^{2+} bound complex. A red shift of absorption peaks is often ascribed when Zn^{2+} binds to compounds. The absorption values tails off into the visible and thus would allow nitrones compounds to be excited in the noticeable light region.

2.5. Effect of EDTANa2 on Zn2+ ion quenching of 1-4

The fluorescence spectroscopic responses were reversible when the Zn2+ chelating reagent EDTANa2 (1.0 equiv.) It was added to 1-Zn^{2+}, 2-Zn^{2+}, 3-Zn^{2+} and 4-Zn^{2+} solution, the fluorescence spectrum almost revived to the original shape of free 1-4, which indicating the effective Zn^{2+} removal. The phenomenon proves that these compounds could serve as selectivity behaviour “on-off” sensor for Zn^{2+} (Fig. 8).
2.6. Computational studies

Density functional theory (DFT) has become an outstanding tool to predict a diverse effect of ground state properties of small and large molecules. Therefore, the ground-stategeometries of compounds 1-4 were optimized at B3LYP/6-31G (d, p) level theory using the Gaussian 03W program (Gonzalez et al. 2004). From the results, we understand structural and electronic properties of title compounds.

2.7. Molecular electrostatic potential (MEP) analysis

MEP has been mapped for all molecules as presented in Fig.S16. Higher negative and positive potential regions are shown in pink and green colours, respectively. The maximum negative regions are favourable for electrophilic attack, whereas maximum positive regions are attractive towards the nucleophilic attack. MEP represents the complete nuclear and electronic charge distribution of a molecule and is a very well-designed property to study the reactivity of the given molecule (Arockia doss et al. 2015; Arockia doss et al. 2017).

The negative regions are indicated at around the oxygen and nitrogen atoms. As shown in Fig. S16, the negative and positive latent sites are around the electronegative (oxygen and nitrogen) atoms and the hydrogen atoms, respectively, while the remaining species are bounded by zero potentials. As we conclude from this, our title molecules are ready to involve both electrophilic and nucleophilic nature substitution reactions.

2.8. HOMO-LUMO analysis

The frontier molecular orbital’s play a pivotal role in the electrical and optical properties, as well as in chemical reactions, UV–vis and fluorescence spectra (Padmaja et al. 2009; Tovar et al. 2008). The contour surfaces of the FMO (Frontier Molecular Orbital’s) for molecule 2 are drawn in Fig.S17. In the compounds 1-4, the electron cloud distribution in HOMO and LUMO are spread over whole molecules. The difference in the range of charge separation between the HOMO and LUMO of those structures play an important role in the ICT. Furthermore, the difference on the values of ΔE of compounds 1-4 was observed, when introduction of different electron donating character at phenyl core. As seen from Table 6, that the amino substitution in phenyl group does play a role on the orbital distribution (HOMO and LUMO) and also has a direct persuade on the electron density difference for the stabilizing ICT process. In this sense, it seems that the selection of amino substitution has an advantageous effect among the designed candidate. As a result reveals, the decreasing trend of ΔE gap of inspected compounds becomes 1 > 3 > 4 > 2. We can monitor from Table 6, the introduction of different substituent at phenyl core considerably change the ΔE value.

Table 6: Calculated Energy Values (EV) of Compounds 1-4 in Gas Phase

<table>
<thead>
<tr>
<th>DFT/B3LYP/6-311G(d,p)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electro negativity((\chi))</td>
<td>-6.08</td>
<td>-5.71</td>
<td>-6.00</td>
<td>-5.95</td>
</tr>
<tr>
<td>(\chi) LUMO</td>
<td>-2.84</td>
<td>-2.62</td>
<td>-2.79</td>
<td>-2.76</td>
</tr>
<tr>
<td>(\chi) HOMO</td>
<td>3.23</td>
<td>3.09</td>
<td>3.21</td>
<td>3.19</td>
</tr>
<tr>
<td>Electronegativity((\gamma))</td>
<td>-4.46</td>
<td>-4.16</td>
<td>-4.39</td>
<td>-4.35</td>
</tr>
<tr>
<td>Hardness((\eta))</td>
<td>1.62</td>
<td>1.55</td>
<td>1.61</td>
<td>1.59</td>
</tr>
<tr>
<td>Softness((s))</td>
<td>6.16</td>
<td>5.61</td>
<td>6.01</td>
<td>5.94</td>
</tr>
<tr>
<td>228.98</td>
<td>239.48</td>
<td>230.34</td>
<td>232.13</td>
<td></td>
</tr>
</tbody>
</table>

Chemical hardness is indicated to the stability and reactivity of a chemical system, it measures the resistance to change in the electron distribution or charge transfer. In this intellect, chemical hardness corresponds to the gap between the HOMO and LUMO. The larger the HOMO–LUMO energy gap, the molecule becomes harder, more stable and less reactive the molecule. Table 6 contains the computed chemical hardness values for compounds 1-4. By analyzing the results, as show that compound 1 is harder and less reactive than the other compounds. The electronic chemical potential is used to study the electronegativity of a molecule. The increasing trend in electronic chemical potential for the compounds is 1 < 3 < 4 < 2. The results of chemical hardness and electronic chemical potential of compounds 1-4 showed that compound 1 are harder and less reactive than compounds 2-4. Electrophilicity schedule measures the propensity or capacity of a species to accept electrons. To evaluate the principles of electrophilicity in compounds 1-4, the electrophilicity value mention that compound 1 is a nucleophile better than the other compounds. Table 6 shows that compound 1 is strongest nucleophile whereas compound 2 is the strongest electrophilie.
2.9. NLO analysis

Organic materials with commutable OLED properties with NLO responses are sought for optoelectronic applications such as molecular-scale memory devices with multiple storage and nondestructive manner (Nakano et al. 2002; Geskin et al. 2003). A large variety of NLO switches exhibiting large changes in the hyperpolarizability (β), the molecular second-order NLO activity (Sajan et al. 2006; Kaatz et al. 1998). Some quantum chemical description which is dipole moment (μ), the polarizability (α), the anisotropy of the polarizability (Δα) and hyperpolarizability (β) have been used for describing the NLO properties in many computational studies (Savithri et al. 2015). In this context, the design of NLO switches, that is, molecules computed for their hyperpolarizability by alternate their substitution at the phenyl core. The quantum chemical descriptions calculated from the Gaussian output have been explained in earlier work. Ease in which NLO activity increase with increasing the polarizability, anisotropy of the polarizability and hyperpolarizability.

A series of new molecules possesses a nonlinear optical property are designed, which includes H, NH, CH and OH functionalities of the phenyl center. According to Table 7, all values of each point out molecules are greater than urea. Therefore, NLO properties of our compounds are greater than urea. Results from Table 7, the general decreasing ranking of NLO properties should be as follows: 2 > 4 > 3 > 1. With instant, molecule 2 is the best applicant for NLO properties.

Table 7: Non-Linear Optical Activity of Compounds 1-4

<table>
<thead>
<tr>
<th>NLO behavior</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole moment (μ) D</td>
<td>6.48</td>
<td>9.44</td>
<td>7.18</td>
<td>6.92</td>
</tr>
<tr>
<td>Polarizability (α) x10^2 esu</td>
<td>1.45</td>
<td>1.47</td>
<td>1.55</td>
<td>1.54</td>
</tr>
<tr>
<td>Anisotropy of the Polarizability (Δα) x10^2 esu</td>
<td>4.43</td>
<td>5.04</td>
<td>4.68</td>
<td>6.68</td>
</tr>
<tr>
<td>Hypopolarizability (β) x10^3 esu</td>
<td>1.80</td>
<td>3.74</td>
<td>2.20</td>
<td>2.27</td>
</tr>
</tbody>
</table>

3. Experimental

3.1. Materials and methods

All reagents and chemicals were purchased from Aldrich chemicals Ltd and were used without further purification. The solvents were purified before use. Sensitivity study of probe compounds (1-4) towards different solvents, and metal ions determined out using chloride or nitrate salts of Zn2+.

Hypolarizability (β) have been synthesized, and its spectroscopic properties studied. The sensor showed an excellent selectivity with ethereal fluorescence quenching to Zn2+.

The reactivity of title compounds were inferred by alternate their substitution at the phenyl core. The quantum chemical description calculated from the Gaussian output have been explained in earlier work. Ease in which NLO activity increase with increasing the polarizability, anisotropy of the polarizability and hyperpolarizability.

A series of new molecules possesses a nonlinear optical property are designed, which includes H, NH, CH and OH functionalities of the phenyl center. According to Table 7, all values of each point out molecules are greater than urea. Therefore, NLO properties of our compounds are greater than urea. Results from Table 7, the general decreasing ranking of NLO properties should be as follows: 2 > 4 > 3 > 1. With instant, molecule 2 is the best applicant for NLO properties.

Table 7: Non-Linear Optical Activity of Compounds 1-4

<table>
<thead>
<tr>
<th>NLO behavior</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole moment (μ) D</td>
<td>6.48</td>
<td>9.44</td>
<td>7.18</td>
<td>6.92</td>
</tr>
<tr>
<td>Polarizability (α) x10^2 esu</td>
<td>1.45</td>
<td>1.47</td>
<td>1.55</td>
<td>1.54</td>
</tr>
<tr>
<td>Anisotropy of the Polarizability (Δα) x10^2 esu</td>
<td>4.43</td>
<td>5.04</td>
<td>4.68</td>
<td>6.68</td>
</tr>
<tr>
<td>Hypopolarizability (β) x10^3 esu</td>
<td>1.80</td>
<td>3.74</td>
<td>2.20</td>
<td>2.27</td>
</tr>
</tbody>
</table>

3.2. Experimental

3.1. Materials and methods

All reagents and chemicals were purchased from Aldrich chemicals Ltd and were used without further purification. The solvents were purified before use. Sensitivity study of probe compounds (1-4) towards different solvents, and metal ions determined out using chloride or nitrate salts of Zn2+. The sensor showed an excellent selectivity with ethereal fluorescence quenching to Zn2+.

The reactivity of title compounds were inferred by alternate their substitution at the phenyl core. The quantum chemical description calculated from the Gaussian output have been explained in earlier work. Ease in which NLO activity increase with increasing the polarizability, anisotropy of the polarizability and hyperpolarizability.

A series of new molecules possesses a nonlinear optical property are designed, which includes H, NH, CH and OH functionalities of the phenyl center. According to Table 7, all values of each point out molecules are greater than urea. Therefore, NLO properties of our compounds are greater than urea. Results from Table 7, the general decreasing ranking of NLO properties should be as follows: 2 > 4 > 3 > 1. With instant, molecule 2 is the best applicant for NLO properties.

3.3. Linear Optical Activity of Compounds

(E)-4-Amino-N-((5-nitrofuran-2-yl)methylene)anilineoxide(2)

Yield 72%; m.p.: 66 (°C); MF: C11H9N3O3; Elemental analysis: Calcd (%): C, 53.44; H, 3.67 N, 17.00; Found (%): C, 52.01; H, 3.49; N, 16.71: IR (KBr, cm-1): 3046 (υAr-CH), 2923 (vall.-CH), 1539 (υ(C=N), 1482 (υ(C=C), 1017 (υ(N-O) (Fig.S1): 1H NMR(400 MHz, CDCl3, δ(ppm)): 7.49-8.05(Ar-H), 8.27 (C-H) (Fig.S5); 13C NMR (100 MHz, CDCl3, δ, ppm): 111.2-155.9 (Ar-C); 171.3 (C-H) (Fig.S9).

(Z)-4-Methyl-N-(nitrofuran-2-yl)methylene)anilineoxide(3)

Yield 70%; m.p.: 57 (°C); MF: C12H10N3O3; Elemental analysis: Calcd (%): C, 58.54; H, 4.08; N, 11.38; Found (%): C, 57.62; H, 3.88; N, 11.27: IR (KBr, cm-1): 3040 (υAr-CH), 2922 (vall.-CH), 1541 (υ(C=N), 1480 (υ(C=C), 1011 (υ(N-O) (Fig.S3): 1H NMR(400 MHz, CDCl3, δ(ppm)): 7.29-7.74 (Ar-H), 8.46 (C-H), 2.43 (C-H) (Fig.S7); 13C NMR (100 MHz, CDCl3, δ, ppm): 113.4-145.7 (Ar-C); 172.5 (C-H); 29.73 (CH3) (Fig.S11).

(E)-4-Hydroxy-N-((5-nitrofuran-2-yl)methylene)anilineoxide(4)

Yield 75%; m.p.: 72 (°C); MF: C11H10N3O4; Elemental analysis: Calcd (%): C, 53.24; H, 3.27; N, 11.30; Found (%): C, 52.72; H, 3.18; N, 10.67: IR (KBr, cm-1): 3042 (υAr-CH), 2921 (vall.-CH), 1543 (υ(C=N), 1484 (υ(C=C), 1015 (υ(N-O) (Fig.S4): 1H NMR(400 MHz, CDCl3, δ(ppm)): 7.47-7.75(AR-H), 7.98 (C-H); 5.56 (O-H) (Fig.S8); 13C NMR (100 MHz, CDCl3, δ, ppm): 114.5-149.9 (Ar-C); 173.3 (C-H) (Fig.S12).

4. Conclusions

New aldosterones (1-4) have been synthesized, and its spectroscopic properties studied. The excited-state photophysical behaviour of compounds 1-4 has been deliberate by UV-visible and emission spectra. Additionally, the solvent power of the title compound and its solvatophotomeric behaviour can be quantitatively expressed by LSE relationship using empirical Kamlet-Taft parameter scale. It has been depicted that the polarity in addition to the hydrogen bond donor or accepting ability of the solvent contributes to the stability of the excited-state. The chemo sensing actions of compounds 1-4 were also determined via fluorescence spectroscopy. The sensor showed an excellent selectivity with fluorescence quenching to Zn2+ over other cations in ethanolic solution. The chelating functionality proves that these compounds could to as a sensitive “off” sensor for Zn2+. The reactivity behaviour of title compounds were inferred by MEP analysis. The intended hyperpolarizability values show that compound 2 possesses good NLO properties.

References

al basis of zinc

Curr. Opin. (2), 377

tance spectra,

International Journal of Advanced Chemistry

[28]

[22]

[21]

[20]

[19]

[18]

[17]

[16]

[15]

[14]

[13]

[12]

[11]

[10]

[9]

[8]

Xu Z., Yoon J., Spring D. R., 2015, Fluores
dots of rat tissue independent of body composi-

Physiol. Rev.,

(3), 79-118.

https://doi.org/10.1152/physrev.1993.73.1.79.

Scrimgeour AG, Stahl C H., McClung J. P., Marchitelli L.

J.-Young A. J., 2007, Moderate zinkseficiencynegativty affects

Rapid induction of alpha a mylolden zinc by

Science,

(26), 5177).

1464-1470.

10.1126/science.1007293.

Silva A. P. De., NimalGunaratne H. Q., Gunnlaugsson T.,

Huxley A. P., 2010, Fluores

dipolar cycloadditions. Past and future,

https://doi.org/10.1002/jrs.2145.

(a) Padmaja L., Ravikumar C., Sajan D., Hubert Joe I., Jayakumar

V. S., Sridhar B., Arockia doss M., Rajarajan G., Thanikachalam V., Selvanayagam

minds, Chem. Rev.,

110(10), 6280.

https://doi.org/10.1021/cr100154p.

mechanisms for design of fluorescent chemosensors emerging in recent years,

Chem. Soc. Rev.,

40, 3483-3495.

https://doi.org/10.1039/c0cs00224k.

Kamlet M. J.,Taf R.W., 1976, thesolvatochromic comparison

method. I. The .beta.-scale of solvent hydrogen-bond acceptor (HBA)

basicities, J. Am. Chem. Soc.,

98(2), 377-383.

Reichardt C., 2006, Solvents and Solvent Effects in Organic Chemistry,

wiley-vch, 3h, 653.

Kawski A., Kuklinski B., Bojarski p., 2006, Excited state dipole moments of N,N-dimethyvlamine from thermochromic effect on electronic absorption and fluorescence spectroscopy, Chemical physics,

320, (2-3).

188-192.

studies on the determination of the dipolemoment of some different layer dyes, Spectrochim.Acta Part.

A, 60, 187.

(a) Kawski A., 2002, on the estimation of excited-state dipole mo-

61, 962. (b) Lippert E., Naturforsch Z., 1955, Dipolmoment und elektroneutralen probes,

https://doi.org/10.1021/ar50143a003.

Husain M. M., Sindhu R., Tandon H.C., 2012, Photophysical properties and estimation of ground and excited state dipole moments of 7-diethylamino and 7-diethylamino-4-methyl co-

muron dyes from absorption and emission spectra, J. Chem.,

3, 87-93.

https://doi.org/10.1021/ja035862p.

(b) Tovar R. M., Johnson K., Ashline K., Seminario

V. S., Pettit G. R.,Nielsen O. F., 2009, Density functional study on

coordination polymers of 3,5-dimethyl-2,6-diethionopyridin-2-

yderidine-4-on-1-iium picate: A comprehensive experimental and

computational study, J. Mol. Struct., 1128, 268-278.

https://doi.org/10.1016/j.molstruc.2015.03.013.

(b) Arockia dosa M., Savithiri S., Rajanagar G., Thangakhalam V.,

Saleem H., 2015, Synthesis, spectroscopic (FT-IR, FT-Raman, UV and NMR) and computational studies on 3-ptyentyl-2-flcy-

dihydropiperidin-4-one-carboxyine, SpectrochimicaActa Part.

https://doi.org/10.1016/j.saa.2015.03.117.

https://doi.org/10.1021/ja035862p.

(b) Tovar R. M., Johnson K., Ashline K., Seminario

V. S., Pettit G. R.,Nielsen O. F., 2009, Density functional study on

coordination polymers of 3,5-dimethyl-2,6-diethionopyridin-2-

yderidine-4-on-1-iium picate: A comprehensive experimental and

computational study, J. Mol. Struct., 1128, 268-278.

https://doi.org/10.1016/j.molstruc.2015.03.013.

(a) Padmaja L., Ravikumar C., Sajan D., Hubert Joe I., Jayakumar

V. S., Pettit G. R.,Nielsen O. F., 2009, Density functional study on

coordination polymers of 3,5-dimethyl-2,6-diethionopyridin-2-

yderidine-4-on-1-iium picate: A comprehensive experimental and

computational study, J. Mol. Struct., 1128, 268-278.

https://doi.org/10.1016/j.molstruc.2015.03.013.

(b) Tovar R. M., Johnson K., Ashline K., Seminario

V. S., Pettit G. R.,Nielsen O. F., 2009, Density functional study on

coordination polymers of 3,5-dimethyl-2,6-diethionopyridin-2-

yderidine-4-on-1-iium picate: A comprehensive experimental and

computational study, J. Mol. Struct., 1128, 268-278.

https://doi.org/10.1016/j.molstruc.2015.03.013.

(b) Tovar R. M., Johnson K., Ashline K., Seminario

V. S., Pettit G. R.,Nielsen O. F., 2009, Density functional study on

coordination polymers of 3,5-dimethyl-2,6-diethionopyridin-2-

yderidine-4-on-1-iium picate: A comprehensive experimental and

computational study, J. Mol. Struct., 1128, 268-278.

https://doi.org/10.1016/j.molstruc.2015.03.013.

https://doi.org/10.1021/ja035862p.

(a) Racocka dos M., Savithiri S., Rajanagar G., Thangakhalam V.,

Saleem H., 2015, Synthesis, spectroscopic (FT-IR, FT-Raman, UV and NMR) and computational studies on 3-ptyentyl-2-flcy-

dihydropiperidin-4-one-carboxyine, SpectrochimicaActa Part.

https://doi.org/10.1016/j.saa.2015.03.117.

(a) Padmaja L., Ravikumar C., Sajan D., Hubert Joe I., Jayakumar

V. S., Pettit G. R.,Nielsen O. F., 2009, Density functional study on

coordination polymers of 3,5-dimethyl-2,6-diethionopyridin-2-

yderidine-4-on-1-iium picate: A comprehensive experimental and

computational study, J. Mol. Struct., 1128, 268-278.

https://doi.org/10.1016/j.molstruc.2015.03.013.